159 research outputs found

    Logic Programs with Compiled Preferences

    Full text link
    We describe an approach for compiling preferences into logic programs under the answer set semantics. An ordered logic program is an extended logic program in which rules are named by unique terms, and in which preferences among rules are given by a set of dedicated atoms. An ordered logic program is transformed into a second, regular, extended logic program wherein the preferences are respected, in that the answer sets obtained in the transformed theory correspond with the preferred answer sets of the original theory. Our approach allows both the specification of static orderings (as found in most previous work), in which preferences are external to a logic program, as well as orderings on sets of rules. In large part then, we are interested in describing a general methodology for uniformly incorporating preference information in a logic program. Since the result of our translation is an extended logic program, we can make use of existing implementations, such as dlv and smodels. To this end, we have developed a compiler, available on the web, as a front-end for these programming systems

    An FLP-Style Answer-Set Semantics for Abstract-Constraint Programs with Disjunctions

    Get PDF
    We introduce an answer-set semantics for abstract-constraint programs with disjunction in rule heads in the style of Faber, Leone, and Pfeifer (FLP). To this end, we extend the definition of an answer set for logic programs with aggregates in rule bodies using the usual FLP-reduct. Additionally, we also provide a characterisation of our semantics in terms of unfounded sets, likewise generalising the standard concept of an unfounded set. Our work is motivated by the desire to have simple and rule-based definitions of the semantics of an answer-set programming (ASP) language that is close to those implemented by the most prominent ASP solvers. The new definitions are intended as a theoretical device to allow for development methods and methodologies for ASP, e.g., debugging or testing techniques, that are general enough to work for different types of solvers. We use abstract constraints as an abstraction of literals whose truth values depend on subsets of an interpretation. This includes weight constraints, aggregates, and external atoms, which are frequently used in real-world answer-set programs. We compare the new semantics to previous semantics for abstract-constraint programs and show that they are equivalent to recent extensions of the FLP semantics to propositional and first-order theories when abstract-constraint programs are viewed as theories
    • …
    corecore